Abstract

Alkali-heat treatment (AHT) is a simple and practical method to make titanium surfaces bioactive. Hydroxyapatite nucleates on Ti when in contact with body fluids due to the presence of a thin sodium titanate film produced by the AHT. This method was proposed more than a decade ago and it has been widely investigated at varied scopes. However, there is still little information about the mechanical properties of this film. In this work, the tribo-mechanical behavior of films produced by alkali treatment (AT) and AHT on Ti is investigated using instrumented indentation technique. The films were also characterized by TF-XRD, SEM, EDS and in vitro bioactivity tests. Analytical methods were employed to obtain the mechanical properties of the film from instrumented indentation data. The heat treatment subsequent to the alkaline processing increased the film elastic modulus from 1.7 GPa to 2.8 GPa, the hardness from 12 MPa to 20 MPa and the critical load for scratch test from 1.5 mN to 5.5 mN. Despite the overall improvement in the film bioactivity and tribo-mechanical behavior, the AHT elastic modulus is only 2% of the pristine Ti whereas hardness is less than 1%. This information must be considered for implant design purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.