Abstract

In response to an unbalanced demand for crop driven by population growth, agricultural strategies such as early diagnosis and pre-treatment to improve plant yield and quality are urgently needed. Early diagnosis and treatment of plant disease is necessary to achieve high yield and quality, as plant disease is the main cause of low yield and quality. However, standard methods (nucleic acid and antibody-based molecular assays etc.) for diagnosing plant disease still suffer from complex and laborious analysis procedures. Meanwhile, pesticides and fertilizers for treating plant disease also face concerns about low utilization rates. Therefore, there is an urgent need for novel methods to address these concerns. Recently, nanotechnology has been attracting attention in plant disease management. Nanomaterials, as its integral portion, are expected to overcome the abovementioned application deficiencies. This review systematically summarizes recent advances in nanomaterials applied to plant health monitoring and disease treatment. First, the mechanism of nanosensors to monitor plant health is discussed and its advantages over traditional detection devices are highlighted. Then, the therapeutic effects of nanopesticides/fertilizers are discussed and their use to mitigate the loss of active ingredients (AIs) is emphasized. Finally, the challenges and future perspectives for the development of nanomaterials in plant health monitoring for yield improvement are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.