Abstract
Gas sensors play an essential role in various fields such as public safety, environmental monitoring, medical engineering, food monitoring, pharmaceutical industries and clinical diagnostic, to name a few. The need for miniaturized sensors possessing high sensitivity, time response, selectivity, reproducibility, durability, and low cost has driven the discovery of nanomaterials-based gas sensing devices due to their inherent properties such as chemical/physical gas adsorption capabilities and high surface-to-volume ratio. Studies in the literature highlight the development of gas sensors using novel nanomaterials to detect toxic gases. The gas molecules are sensed by the nanomaterial due to adsorption of the gas on the sensor surface, which leads to conductivity change in the nanomaterial. However, the sensing mechanism is quite complicated. Computational studies help the researchers elucidate the physical understanding behind such a complicated mechanism and aid in developing tailored nanomaterials for gas sensing applications. This review outlines different sensor types and the advantages and disadvantages of each sensor for various applications. Different nanostructure-based gas sensors and recent studies are discussed elaborately. The contributions made by theoretical and experimental studies in studying the gas sensing applications of nanomaterials are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.