Abstract

Antibiotics are widely used as bacteriostatic or bactericidal agents against various microbial infections in humans and animals. The excessive use of antibiotics has led to an accumulation of their residues in food products, which ultimately poses a threat to human health. In light of the shortcomings of conventional methods for antibiotic detection (primarily cost, proficiency, and time-consuming procedures), the development of robust, accurate, on-site, and sensitive technologies for antibiotic detection in foodstuffs is important. Nanomaterials with amazing optical properties are promising materials for developing the next generation of fluorescent sensors. In this article, advances in detecting antibiotics in food products are discussed with respect to their sensing applications, with a focus on fluorescent nanomaterials such as metallic nanoparticles, upconversion nanoparticles, quantum dots, carbon-based nanomaterials, and metal-organic frameworks. Furthermore, their performance is evaluated to promote the continuation of technical advances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.