Abstract
Biofilm formation is a major problem in medical device-related infections leading to failure of implant-based therapies. Though various conventional approaches to counter biofilm formation like physical and/or mechanical removal, chemical removal, and the use of antimicrobials exist, they fail due to increased resistance of biofilms. This review discusses various nanomaterial-based approaches such as the use of metallic and metal oxide nanoparticles- and polymer-based nanocomposites, which are currently being developed for prevention and treatment of biofilms. Nanoparticles of transition metals and their oxides are toxic to microorganisms and exhibit their toxicity through the generation of reactive oxygen species at concentrations that are non-toxic to eukaryotic cells. Other approaches include the entrapment of bioactive agents in polymer/ceramic nanoparticles, for enhanced anti-biofilm activity due to the synergistic effect between them. These nanomaterial-based approaches could play an important role in control and eradication of biofilm related infections and complications associated with medical devices and implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.