Abstract

In this paper we investigate error rates of nanomagnetic logic devices with perpendicular magnetization by compact modeling. Two different types of nanomagnets for information propagation and logic computing are introduced. The switching behavior of field-coupled nanomagnets is measured and analyzed. A compact model is derived from physics and experimental results are applied to the magnetic compact model. General requirements for fabrication parameters and clocking fields for reliable operation are extracted. We perform simulations and measurements on single devices to demonstrate the accuracy of the macromodel. Simulations on complex systems show that the error rate of a field-coupled magnetic system strongly depends on the variation of the switching field and the strength of the coupling field between the nanomagnets. The error rate of a 1-bit full adder is investigated for varying dot parameters. The results demonstrate the importance of fast simulation tools for investigations on the design of nanomagnetic computing devices and systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.