Abstract
A tapping mode atomic force microscopy (AFM)/scanning tunneling microscopy (STM) system using a non-optical tuning fork force sensing method has been developed for the scanning probe lithography. In comparisons with the nanolithography done by AFM with the conductive cantilever tip, our method has the following advantages. (1) It has longer tapered length STM tip and smaller half cone angle to perform the nanometer scale patterning with high aspect ratio. (2) Its low cost tungsten or Pt/Ir STM tip can be easily fabricated and attached to our AFM force sensing tuning fork. (3) It can be easily adapted to large-scale parallel processing because of the all-electric force sensing methods. Nanostructures with high aspect ratios and large depths have been successfully performed on the silicon surface by using our AFM/STM nanopatterning system followed by the differential etching process. Lines with different widths and matrices of dots with various diameters were demonstrated for potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.