Abstract

A nanoliter solvent extraction technique combined with microspot matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is presented. This method involves the use of a nanoliter droplet containing organic solvents at the tip of a small capillary for extraction. The droplet is formed inside a microliter aqueous sample containing the analyte of interest. After extraction, the droplet is deposited onto a MALDI target precoated with a thin matrix layer. Since the nanoliter droplet never touches the sample container wall, any possible extraction of contaminants adsorbed on the plastic or glassware is avoided. In addition, there is no need to concentrate the organic phase after the extraction, thus avoiding any possible loss during the concentration step. The nanoliter volume can be readily deposited onto a MALDI target, producing a high analyte concentration within a microspot. Combined with microspot MALDI, this technique allows for very sensitive analysis of the extracted analyte. The performance of this technique is illustrated in several applications involving the detection of hydrophobic peptides or phospholipids. It is shown that very hydrophobic analytes can be extracted from small-volume samples containing a large amount of salts and/or more hydrophilic analytes, which tend to give dominant signals in conventional MALDI experiments. Nanoliter extraction of analyte from samples containing less than 100 nM hydrophobic analyte and over 1 microM easily ionized hydrophilic species is demonstrated. Finally, using the analysis of the ionophore valinomycin as an example, it is demonstrated that the technique is a more reliable tool for probing metal-peptide complexes than regular MALDI sample preparations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.