Abstract

The mixing rate is a crucial factor in determining the reaction rate and product distribution in reactors for academic and industrial application. Especially, in pharmaceutical or dangerous chemistry, it is essential to create rapidly homogeneous mixture under the control of a small volume of precious sample. In this study, we propose a microloop reactor that is capable of rapid mixing for homogeneous reaction by utilizing programmable actuated microvalves (PAVs), which can generate the rotary flow rapid mixing in the reactor. The microloop reactor is composed of a stacked layered structure, which is prepared by a soft lithography method. The top layer (fluidic layer) has microchannels for supplying each reagent that is assembled with the bottom layer (control layer). The bottom layer has ultrathin polymer membrane, which can be an on-off valve to precisely control the nanoliter-scale volume of reagents in the reactor. To evaluate mixing performance, we use peroxidase reaction that produces fluorescent by-product (resorufin), thereby observing how fast they are mixed together. We quantify the uniformity of fluorescent intensity throughout the reaction loop, indicating that our proposed microloop reactor exhibits a homogeneous reaction. We envision the microreactor has potential to provide optimized microenvironments in which to perform dangerous chemistry, pharmaceuticals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.