Abstract

Three-dimensional particle tracking in biological systems is a quickly growing field, many techniques have been developed providing tracking characters. Digital in-line holographic microscopy is a valuable technique for particle tracking. However, the speckle noise, out-of-focus signals and twin image influenced the particle tracking. Here an adaptive noise reduction method based on bidimensional ensemble empirical mode decomposition is introduced into digital in-line holographic microscopy. It can eliminate the speckle noise and background of the hologram adaptively. Combined with the three-dimensional deconvolution approach in the reconstruction, the particle feature would be identified effectively. Tracking the fixed beads on the cover-glass with piezoelectric stage through multiple holographic images demonstrate the tracking resolution, which approaches 2 nm in axial direction and 1 nm in transverse direction. This would facilitate the development and use in the biological area such as living cells and single-molecule approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.