Abstract

There has been little research into the contact areas between electric brushes and collectors during sliding interactions due to the difficulty of observing them. A layer of nanosized wear particles forms on the brush contact due to stochastic interactions between the surfaces that give the layer a mottled/speckled structure. This causes the output signal current or voltage to fluctuate. Taking a new approach, we investigate different polyhedral nanoparticle shapes, considering each particle to be enclosed in a bounding cube. Here we focus on Joule’s first law and assume that the particles are flattened due to electric currents, leading to Joule heating and hence temperature changes. Our results show that the degree of wear particle dispersion has a significant effect on the wear rate and electrical contact durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.