Abstract
Protonic ceramic electrolysis cell (PCEC) is a promising technology for production of pure dry hydrogen due to the low operating temperature and high efficiency. One of the obstacles for commercialization of PCEC technology is the poor performance and insufficient long-term durability of the oxygen electrode. In this study, we address the above challenge by designing a LaCoO3 (LC) catalyst infiltrated porous BaZr0.8Y0.2O3−δ (BZY20) backbone electrode (LC-BZY20). The performance and durability of the LC-BZY20 electrode are investigated on symmetrical cells using electrochemical impedance spectroscopy (EIS). The total electrode polarization resistance (RP) values of the electrode are 0.56, 1.24, 2.18, and 2.90 Ω cm2 in 3 vol% humidified synthetic air at 600, 550, 500, and 450 °C, respectively, indicating good electrochemical performance of the LC-BZY20 electrode. Furthermore, the LC-BZY20 electrode displays good stability, without significant performance degradation when tested at 600 °C in 10 vol% humidified air for 900 h. We further study the influence of oxygen partial pressure (Po2) and steam partial pressure (PH2O) on the response of the EIS data, and propose a set of chemical and electrochemical processes involved in the steam splitting reaction in the LC-BZY20 electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.