Abstract

To analyze drug transport at a single cell level, a mast cell line, RBL-2H3, was treated with cell-permeable fluorescent compounds, such as quinacrine, and was monitored by a fluorescence video microscope. Small areas in the video that corresponded to granules and part of the cytosol in a cell were chosen and the signal intensity in these areas was monitored sequentially. The initial rate of quinacrine uptake through the cell membrane calculated from the fluorescent signal was correlated with quinacrine concentration, and it decreased at a lower temperature, showing that the transport was an energy-requiring process, such as active transport. The kinetics of the transport through the microgranular membrane did not depend on the temperature but the pH in the cytosol, therefore this process should be passive transport by pH gradient. These data indicate that the observation of video microscope-mediated drug transport using fluorescent dye is useful in kinetic analysis at the nanometer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.