Abstract

The forces affecting the ink particles attachment to the paper substrates control the inking and deinking processes. In deinking process, the detachment of ink particles represents a big challenge due to the presence of nano-sized ink particles which can not be separated by conventional means, therefore, it needs special type of treatment to adapt the chemistry of the surrounding solution to control the interfacial forces to separate the ink particle and make their detachment easier. Although studies have been made to correlate chemical structure of fatty alcohol ethoxylates with the efficiency of ink removal, there is still a significant lack of fundamental knowledge regarding the influence of the ethoxylate alcohol on the interaction forces between particulates involved in the deinking process. In this research, fundamental study of the effect of nano-sized ethoxylated alcohol molecules, which exhibits high potential for application in wastepaper deinking, on the ink particle detachment due to changes in the interfacial forces will be studied. In addition, the ability of ethoxylated alcohol to produce nano-size bubbles will be tested in terms of their effect on the ink particle removal. Furthermore, relationship between molecular structure of ethoxylated fatty alcohols (length and ratio of hydrophobic and hydrophilic parts) and ink (toner) will be characterized using atomic force microscopy (AFM) colloidal probe technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call