Abstract

Through three-dimensional finite element modeling, it is demonstrated that the nanoindentation response of piezoelectric nano-islands is strongly dependent on the shape of the nano-island and the depth of indentation. For indentations that are relatively deep (i.e., greater than 5% of the height of the islands), the substrate's elastic and plastic properties have a strong influence on the indentation response of piezoelectric nano-islands with substrate plasticity resulting in a significant reduction in the mechanical and electrical indentation stiffness. The predictions of the finite element models compare well with experiments on nano-islands of strontium-doped lead zirconate titanate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.