Abstract

Although the view that nm-sized oxide particles modify and essentially improve the irradiation resistance of Fe-Cr-based alloys is widely accepted, the correctness of this view has only been demonstrated in singular cases. An extension of the field of considered microstructures, irradiation conditions, and measures of irradiation resistance is required. The present study is focused on nanostructured ferritic Fe-14%Cr-based alloys, with and without the addition of 0.6 wt% Y2O3, produced via mechanical alloying and consolidation by spark plasma sintering. The materials were exposed to single-beam (Fe) and dual-beam (Fe and He) ion irradiations at room temperature. The initial microstructures were characterized, bimodal grain size distributions were observed and nanoindentation was applied to measure irradiation hardening for fine-grained and coarse-grained areas separately. We have found that grain size governs irradiation hardening for single-beam irradiation, while oxide nanoparticles play a dominant role for dual-beam irradiations. This sheds a light on the role of particle-matrix interfaces on helium management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.