Abstract

High temperatures generally affect materials in some form. In this regard, the capability to perform nanoscale measurements at elevated temperatures opens up new possibilities for investigating the temperature dependence of materials’ mechanical properties. Particularly, the responses of aluminum’s different mechanical properties to indentation at various temperatures have been studied experimentally. In this paper, aluminum response to different room temperatures was examined. The behaviors of a single crystal aluminum during loading and unloading were observed. Nanoindentation experiments on a single crystal aluminum (100) sample at temperatures of 265 K and 388 K were performed with different loading conditions. At the start of the first burst of the dislocation glide, which was indicated by a sudden increase in displacement with no increase in loading, evidence of plastic properties and softening effects on aluminum was identified. The ductile to brittle transition was observed at temperatures below 273 K. Generally, there was a significant increase in the penetration depth and a decrease in hardness, elastic modulus, and elastic recovery as the testing temperature increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call