Abstract

The initiation of surface damage under point loading has been investigated in polycrystalline alumina materials using low load continuous depth-sensing indentation equipment (nanoindentation). Pure alumina and liquid phase sintered materials containing 10% by weight of magnesium or calcium monosilicate have been examined and data obtained from plots of displacement as a function of load assessed in relation to erosive wear rates. In the pure alumina material, discontinuities (“pop-ins”) in the load-displacement trace appear to be associated with the induction of radial cracking around a plastic impression. The pop-ins provide information on the indentation load at which fracture was initiated, and an estimate of the energy associated with crack formation. SEM imaging of the indentations before and after etching allowed crack paths to be related to microstructural features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.