Abstract

The effect of changing the N2/CH4 feedgas ratio on the structure and mechanical properties of microwave plasma chemical vapor deposited diamond films grown on Ti–6Al–4V alloy substrates was investigated. The relative concentration of CH4 and N2 (in a balance of H2) was shown to strongly influence film structure, hardness, and adhesion. For high CH4 concentration (15% by volume), nanostructured diamond films with roughness magnitudes of 15–30 nm, good adhesion and a high hardness value of 90 GPa was obtained. A distinct correlation was found between the nanoindentation hardness of the deposited film and the N2/CH4 ratio in the plasma, as well as a correlation of hardness to the ratio of the Raman peak intensities (1332 and 1555 cm−1). Scratch adhesion testing of nanostructured diamond films showed delamination at a critical force of 33 N using acoustic emission techniques. These results demonstrate that nanostructured diamond films can be tailored on metallic surfaces with hardness ranging from 10 GPa (medium-hard) to 100 GPa (superhard) and may be considered for wear resistant applications such as in the design of articulating medical implant devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.