Abstract

A simple and robust scheme is proposed for the fabrication of nanoscale (20 nm line width) and high-aspect-ratio (9:1) structures by using modulus-tunable UV curable epoxy resists. Additionally, the ability to control the Young’s modulus of the imprinted material from hard to rigiflex using these epoxy resists is demonstrated. The physical properties of the new epoxy resists were controlled by adjusting the ratio of bisphenol F-type epoxy resin and acrylonitrile–butadiene rubber-based epoxy resin in the formulation of the resist. The mechanical properties of the resist were tuned to obtain various aspect ratios as well as mold flexibility for conformal contact over non-planar surfaces and large areas. In order to reduce the line width of the imprinted patterns, a process to conformally coat the mold structure by atomic layer deposition of alumina was also developed. Narrow lines with high-aspect-ratio features and with very low defect density were achieved via the new approach and the high mechanical strength of the new resist formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.