Abstract

Metallic glasses are amorphous structured materials exhibiting perfect Newtonian viscous flow in the supercooled liquid temperature range and superior nanoformability under low stress. These properties make metallic glasses ideal materials for nanoimprinting, which is a promising high-throughput, low-cost method of mass producing micro- and nanodevices. For this study, we fabricated SiO2/Si dies having periodic nanodot structures with dot pitches of 50 nm and 40 nm by focused ion beam (FIB) assisted chemical vapor deposition (CVD), and reactive ion etching (RIE). We successfully nanoimprinted Pt-based metallic glass using these dies. The periodic nanohole structures were accurately imprinted due to the optimization of the loading and unloading thermal cycle conditions in the nanoimprinting process with the flattened and thinned metallic glass specimen. The results demonstrate the excellent capability of metallic glass as a nanoimprintable material for fabricating nanodevices such as patterned media. [doi:10.2320/matertrans.M2010241]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.