Abstract

We demonstrate strain-controlled gratings made of an organic elastomer, polydimethylsiloxane (PDMS), which can achieve optical wavelength tuning by varying their spatial periods. The whole device structure presented in this work incorporates a nanoimprinted PDMS grating integrated with electrostatic microelectromechanical systems actuators on a silicon chip. The fabrication of the device combines polymer soft lithography, nanoimprint lithography, and silicon micromachining across multiscale dimensions ranging from a few hundred nanometers to a few millimeters. The fine tuning capability with fast dynamic response of our PDMS/silicon hybrid optical grating device makes it attractive for use in various micro-optical instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.