Abstract

AbstractPolymer self‐lubricating composite coatings have been widely used on the surface of machinery to extend the life of the moving systems/parts by controlling friction and wear. In this work, epoxy nanocomposite coating with the thickness of about 60 μm was fabricated with addition of hexagonal boron nitride nanosheets (BNNSs)/CeO2 nanohybrid for enhancement in antifriction and wear resistance. The active BNNSs were first obtained by exfoliating h‐BN with alkaline solution, and then the rare earth oxide of CeO2 nanoparticles were immobilized on the surface of BNNSs through hydrothermal method. The microstructure morphology and chemical composition of as‐proposed BNNSs/CeO2 were characterized by field emission scanning electron microscopy, HRTEM, Fourier transform infrared spectroscopy, RS, X‐ray diffraction, and X‐ray photoelectron spectroscopy. And the tribological behaviors of epoxy nanocomposite coatings containing BNNSs, CeO2, and BNNSs/CeO2 were investigated comparatively using ball‐on disc friction tester (MPX‐3). And the 440C stainless‐steel ball with diameter of 8 mm was used as the counterface material. Tribological tests showed that epoxy‐BNNSs/CeO2 had the best friction and wear reduction properties, and the lowest coefficient of friction and wear rate of epoxy‐based composite coating were achieved when the content of BNNSs/CeO2 was 0.5 wt%, with 84.9% and 96.3% reduction, respectively. Moreover, the effect of sliding conditions on the tribological performance of epoxy‐BNNSs/CeO2 was investigated. The corresponding enhancing mechanisms of BNNSs/CeO2 were discussed as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call