Abstract

AbstractWe present a review of current implementations of nanohole array sensor technology and discuss future trends for this technique applied to multiplexed, label-free protein binding assays. Nanohole array techniques are similar to surface plasmon resonance (SPR) techniques in that local refractive index changes at the sensor surface, correlated to protein binding events, are probed and detected optically. Nanohole array sensing differs by use of a transmission based mode of optical detection, extraordinary optical transmission (EOT) that eliminates the need for prism coupling to the surface and provides high spatial and temporal resolution for chip-based assays. This enables nanohole array sensor technology to combine the real time label-free analysis of SPR with the multiplexed assay format of protein microarrays. Various implementations and configurations of nanohole array sensing have been demonstrated, but the use of this technology for specific research or commercial applications has yet to be realized. In this review, we discuss the potential applications of nanohole sensor array technology and the impact of that each application has on nanohole array sensor, instrument and assay design. A specific example presented is a multiplexed biomarker assay for metastatic melanoma, which focuses on biomarker specificity in human serum and ultimate levels of detection. This example demonstrates strategies for chip layout and the integration of microfluidic channels to take advantage of the high spatial resolution achievable with this technique. Finally, we evaluate the potential of nanohole array sensor technology against current trends in SPR and protein micro-arrays, providing direction towards development of this tool to fill unmet needs in protein analysis.KeywordsSurface Plasmon ResonanceSurface Plasmon Resonance SensorProtein MicroarraysSurface Plasmon Resonance ImagingNanohole ArrayThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.