Abstract

Recently, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) claimed the detection of a stochastic common-spectrum process of the pulsar timing array (PTA) time residuals from their 12.5 year data, which might be the first detection of the stochastic background of gravitational waves (GWs). We show that the amplitude and the power index of such waves imply that they could be the secondary GWs induced by the peaked curvature perturbation with a dust-like post inflationary era with −0.091 ≲ w ≲ 0.048. Such stochastic background of GWs naturally predicts substantial existence of planet-mass primordial black holes (PBHs), which can be the lensing objects for the ultrashort-timescale microlensing events observed by the Optical Gravitational Lensing Experiment (OGLE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.