Abstract

Nanogranular tungsten oxide (WO3) with excess oxygen is synthesized and its battery performance is evaluated as an anode material for the Li-ion battery (LIB). The formation of a monoclinic WO3 phase is confirmed using X-ray diffraction (XRD) and micro (µ)-Raman spectroscopy analyses. The Rutherford back scattering results confirm the existence of excess oxygen in the film. The charge discharge processes are associated with the conversion of the WO3 from the oxide state to the metallic state, and vice versa, and it shows a maximum specific capacity of 778.8 mAh g−1 at a current density of 0.1 Ag−1 in the first discharge. Even at a very high current density of 1 Ag−1, the sample retains the capacity of 228.6 mAh g−1. It shows excellent rate capability and a long-term cycling stability over 500 charge–discharge cycles, with capacity retention of 217%. The observed high discharge capacity and superior long-term cyclability of the nanograin WO3 anode are attributable to the synergetic effect of the excess-oxygen induced increased donor density and enhanced electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.