Abstract

The development of the next generation of nanotechnologies requires precise control of the size, shape, and structure of individual components in a variety of chemical and engineering environments. This includes synthesis, storage, operational environments and, since these products will ultimately be discarded, their interaction with natural ecosystems. Much of the important information that determines these properties is contained within nanoscale phase diagrams, but quantitative phase maps that include surface effects and critical diameter (along with temperature and pressure) remain elusive. Here we present the first quantitative equilibrium phase map for gold nanoparticles together with experimental verification, based on relativistic ab initio thermodynamics and in situ high-resolution electron microscopy at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.