Abstract
The delivery of novel bioactive scaffolds for the repair of bone defects remains a prominent challenge worldwide. Currently osteoporosis, a disease caused by low bone mineral density affects over 200 million people worldwide with up to half of this population experiencing at least one fracture within their lifetime. Recently temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel (PIB nanogel) scaffolds have emerged as biomaterial candidate for regenerative therapies. It has the advantage of being injected from syringes as a soluble gel form (capable of delivering growth and/or living progenitor cells) yet hardens once it reaches body temperatures. Although this material demonstrates optimal clinical delivery of scaffolds, its main drawback is its low osteoconductivity and bioactivity. Recently we have demonstrated that mesoporous bioactive glass (MBG) loaded with strontium was able to regenerate osteoporotic defects in vivo and enhance osteoblast differentiation in vitro. The aim of this study was to combine the advantages of these two therapies and prepare PIB-nanogel scaffolds containing Sr-MBG and investigate their ability to regenerate femur defects created in ovarectamized rats. The results demonstrate that groups containing Sr-MBG within the nanogel formulation had significantly higher new bone formation when compared with other modalities. We further demonstrate that although nanogel demonstrated poor osteogenic ability, the addition of osteoblasts worked synergistically with Sr-MBG particles to enhance the regeneration of the created femur defects in osteoporotic animals. In conclusion, PIB nanogel scaffolds are a viable treatment modality for bone tissue engineering and may serve as a carrier-scaffold for osteogenic cells and/or bioactive scaffolds such as Sr-MBG. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1175-1183, 2017.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.