Abstract

A novel nanogap fabrication method using an electrochemical nanopatterning technique is presented. Electrochemical deposition of platinum ions reduces the microgap size to the sub-50-nm range due to the self-limited volume expansion of the electrodes. Additionally, the low crystallinity of platinum reduces the line edge roughness in the electrodes, whereas the high crystallinity of gold increases it. Current compliance, a buffered resistor, and a symmetric deposition strategy are used to achieve high reliability and practicality of nanogap electrodes. As a possible application, an organic thin-film transistor using the nanogap electrodes is also demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.