Abstract
Nanofretting refers to cyclic movements of contact interfaces with the relative displacement amplitude at the nanometer scale, where the contact area and normal load are usually much smaller than those in fretting. Nanofretting widely exists in microelctromechanical systems (MEMS) and may become a key tribological concern besides microwear and adhesion. With a triboindenter, the nanofretting behaviors of a nickel titanium (NiTi) shape memory alloy are studied under various normal loads (1–10 mN) and tangential displacement amplitudes (2–500 nm) by using a spherical diamond tip. Similar to fretting, the nanofretting of NiTi/diamond pair can also be divided into different regimes upon various shapes of tangential force–displacement curves. The dependence of nanofretting regime on the normal load and the displacement amplitude can be summarized in a running condition nanofretting map. However, due to the surface and size effects, nanofretting operates at some different conditions, such as improved mechanical properties of materials at the nanometer scale, small apparent contact area and single-asperity contact behavior. Consequently, different from fretting, nanofretting was found to exhibit several unique behaviors: (i) the maximum tangential force in one cycle is almost unchanged during a nanofretting test, which is different from a fretting test where the maximum tangential force increases rapidly in the first dozens of cycles; (ii) the tangential stiffness in nanofretting is three orders magnitude smaller than that in fretting; (iii) the friction coefficient in nanofretting is much lower than that in fretting in slip regime; (iv) no obvious damage was observed after 50 cycles of nanofretting under a normal load of 10 mN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.