Abstract
Rifampicin (RIF) was encapsulated into solid lipid nanoparticles (SLNs) to overcome its poor and unreliable oral bioavailability. Novel microemulsification method with high drug loading (50%) and entrapment efficiency (∼67%) was developed (Indian Patent Application 3356/DEL/2013). RIF-SLNs were characterized using TEM, AFM, DSC and XRD. Near neutral SLNs (zeta −3.5±0.8), with average particle size of 130.0±22.6nm showed 70.12% release in phosphate buffer pH 6.8 in 9 days. Single oral dose (50mg/kg) pharmacokinetic studies in Wistar rats indicated 8.14 times higher (in comparison to free RIF) plasma bioavailability with sustained levels for 5 days. Pharmacodynamic parameters viz. TMIC (120h; time for which plasma levels were above MIC of 0.2μg/ml), AUC0–∞/MIC (1868.9h) and Cmax/MIC (75.6) for RIF-SLNs were greater than free RIF by 2.5, 8.2 and 6.6 times, respectively. Similar LD50 (1570mg/kg) and absence (or reversal in satellite group) of adverse events in repeat dose (three doses; highest dose was up to 50 times the human therapeutic dose) toxicity studies confirmed safety of RIF-SLNs. Improved pharmacokinetic profile of RIF-SLNs can be translated to a reduced dose and dosage frequency of RIF, thus resulting in lower or no hepatotoxicity commonly associated with its use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.