Abstract

Ruthenium anticancer drugs belong to the most promising non-platinum anticancer metal compounds in clinical evaluation. However, although the clinical results are promising regarding both activity and very low adverse effects, the clinical application is currently hampered by the limited solubility and stability of the drug in aqueous solution. Here, we present a new nanoparticle formulation based on polymer-based micelles loaded with the anticancer lead ruthenium compound KP1019. Nanoprepared KP1019 was characterised by enhanced stability in aqueous solutions. Moreover, the nanoparticle formulation facilitated cellular accumulation of KP1019 (determined by ICP-MS measurements) resulting in significantly lowered IC50 values. With regard to the mode of action, increased cell cycle arrest in G2/M phase (PI-staining), DNA damage (Comet assay) as well as enhanced levels of apoptotic cell death (caspase 7 and PARP cleavage) were found in HCT116 cells treated with the new nanoformulation of KP1019. Summarizing, we present for the first time evidence that nanoformulation is a feasible strategy for improving the stability as well as activity of experimental anticancer ruthenium compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.