Abstract

Recently, many methods based on amplitude or phase modulation to reduce the focal spot and enhance the longitudinal field component of a tight-focused radially polarized light beam have been suggested. But they all suffer from spot size limit 0.36λ/NA and large side lobes strength in longitudinal component. Here, we report a method of generating a tighter focused spot by focusing radially polarized and azimuthally polarized beams of different wavelengths on a thin photochromic film through a high-numerical-aperture lens simultaneously. In this method, by suppressing the radial component and compressing the longitudinal component of radially polarized beam, absorbance modulation makes the ultimate spot size break the size limit of 0.36λ/NA with side-lobe intensity of longitudinal component below 1% of central-peak intensity. The theoretical analysis and simulation demonstrate that the focal spot size could be smaller than 0.1λ with nearly all radial component blocked at high intensity ratio of the two illuminating beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.