Abstract

Progress in ultrafast electron microscopy relies on the development of efficient laser-driven electron sources delivering femtosecond electron pulses to the sample. In particular, recent advances employ photoemission from metal nanotips as coherent point-like femtosecond low-energy electron sources. We report the nonlinear emission of ultrashort electron wave packets from a gold nanotip generated by nonlocal excitation and nanofocusing of surface plasmon polaritons. We verify the nanoscale localization of plasmon-induced electron emission by its electrostatic collimation characteristics. With a plasmon polariton pulse duration below 8 fs at the apex, we identify multiphoton photoemission as the underlying emission process. The quantum efficiency of the plasmon-induced emission exceeds that of photoemission from direct apex illumination. We demonstrate the application for plasmon-triggered point-projection imaging of an individual semiconductor nanowire at 3 $\mu$m tip-sample distance. Based on numerical simulations we estimate an electron pulse duration at the sample below 10 fs for tip-sample distances up to few micrometers. Plasmon-driven nanolocalized electron emission thus enables femtosecond point-projection microscopy with unprecedented temporal and spatial resolution, femtosecond low-energy electron in-line holography, and opens a new route towards femtosecond scanning tunneling microscopy and spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call