Abstract

PEM fuel cells are considered to be viable alternatives to Internal Combustion Engines (ICEs) in automotive applications due to their many advantages. However, one of the challenges is the need to remove considerable heat at relatively low temperatures (i.e. ∼60–80°C). Nanofluids may offer a promising solution to help reduce the size of thermal management part of PEM fuel cell systems. This paper describes a simulation model developed to theoretically study the effect of using of nanofluids as coolants on the size of the heat exchanger (HE) and the pumping power in PEM fuel cell cooling systems. Considering a 2.4kW PEM fuel cell, 50/50 water-ethylene glycol based nanofluids with concentration of 0.05–2vol% have been investigated. By using 0.05vol% concentration, ∼21% reduction of frontal area of the HE is obtained compared with that using the base fluid at constant coolant mass flow rate. By increasing nanoparticle concentration from 0.05 to 2vol%, a further reduction of only ∼4% of the frontal area of HE can be obtained. No significant difference was found in pumping power when using nanofluids compared that using the base fluid. Using standard models there is negligible differences in the thermal performance using a variety of nanofluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.