Abstract

Nanofluidic architectures and devices have already had a major impact on forefront problems in chemical analysis, especially those involving mass-limited samples. This critical review begins with a discussion of the fundamental flow physics that distinguishes nanoscale structures from their larger microscale analogs, especially the concentration polarization that develops at nanofluidic/microfluidic interfaces. Chemical manipulations in nanopores include nanopore-mediated separations, microsensors, especially resistive-pulse sensing of biomacromolecules, fluidic circuit analogs and single molecule measurements. Coupling nanofluidic structures to three-dimensional microfluidic networks is especially powerful and results in applications in sample preconcentration, nanofluidic injection/collection and fast diffusive mixing (160 references).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.