Abstract

Neuromorphic systems are typically based on nanoscale electronic devices, but nature relies on ions for energy-efficient information processing. Nanofluidic memristive devices could thus potentially be used to construct electrolytic computers that mimic the brain down to its basic principles of operation. Here we report a nanofluidic device that is designed for circuit-scale in-memory processing. The device, which is fabricated using a scalable process, combines single-digit nanometric confinement and large entrance asymmetry and operates on the second timescale with a conductance ratio in the range of 9 to 60. In operando optical microscopy shows that the memory capabilities are due to the reversible formation of liquid blisters that modulate the conductance of the device. We use these mechano–ionic memristive switches to assemble logic circuits composed of two interactive devices and an ohmic resistor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.