Abstract
Abstract The battery is the core component of electric vehicles (EVs). Effective thermal management of batteries directly influences the power, driving mileage, and safety of EVs. This experimental study has been conducted on a thermal management system based on a pulsating heat pipe (PHP) with a TiO2 containing nanofluid for lithium-ion batteries in EVs under different ambient temperatures and operating conditions. This study shows that when the ambient temperature was increased, the PHP suppressed the rise in the maximum temperature on the surface of the lithium battery. In the process of continuous discharge at an ambient temperature of 35 oC and discharge rate of 1C, the maximum temperature of the battery does not exceed 42.22 oC, and the maximum temperature gradient across the battery is less than 2 oC. The distribution of temperature across the surface of the battery is more uniform, and the effective improvement rate is up to 60%. Also, at the end of discharge for 0.5C, 1C, and 1.5C, the lithium-ion batteries performed well with reference to the maximum temperature, surface temperature gradient, and temperature rise. These observations prove that the thermal management system based on PHP with a TiO2-based nanofluid has excellent heat dissipation performance which can minimize the temperature gradient and increase the thermal uniformity on the battery surface. Therefore, the TiO2-PHP ensures that lithium-ion battery performs well within the appropriate temperature range (20 oC–50 oC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.