Abstract
As a novel strategy to improve heat transfer characteristics of fluids by the addition of solid particles with diameters below 100 nm, nanofluids exhibits unprecedented heat transfer properties and are being considered as potential working fluids to be used in high heat flux systems such as nuclear reactors, electronic cooling systems and solar collectors. The present paper reviews the state-of-the-art studies on nanofluid boiling heat transfer performance and critical heat flux (CHF) enhancement. It is found that some results on nanofluids boiling heat transfer performance are inconsistent or contradictory in data published. The knowledge on the mechanism of nanofluids boiling CHF enhancement is insufficient. Bubble dynamics of nanofluids boiling is suggested to be investigated to identify the exact contributions of solid surface modifications and suspended nanoparticles to CHF enhancement in nanofluids boiling heat transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.