Abstract

Nanofluids are the suspension of ultrafine solid nanoparticles in a base fluid. Nanofluids are expected to be a promising coolant candidate for thermal management system of next generation high heat dissipation electronic systems. Nanofluids are used with different volume fractions. A minichannel heat sink with a 20 × 20 cm bottom is analyzed for SiC-water nanofluid and TiO2-water nanofluid turbulent flow as coolants through hydraulic diameters. The results showed that enhancement in thermal conductivity by dispersed SiC in water at 4% volume fraction was 12.44% and by dispersed TiO2 in water was 9.99% for the same volume fraction. It was found that by using SiC-water nanofluid as a coolant instead of water, an improvement of approximately 7.25%–12.43% could be achieved and by using TiO2-water 7.63%–12.77%. The maximum pumping power by using SiC-water nanofluid at 2 m/s and 4% vol. was 0.28 W and at 6 m/s and 4% volume equal to 5.39 W. By using TiO2-water nanofluid at 2 m/s and 4% vol. it was found to be 0.29 W and 5.64 W at 6 m/s with the same volume of 4%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.