Abstract

Catalytic reduction of nitroaromatic compounds present in wastewater by nanostructured materials is a promising process for wastewater treatment. A multifunctional electrode based on ternary spinal nickel cobalt oxide is used in the catalytic reduction of a nitroaromatic compound and supercapacitor application. In this study, we designed nanoflakes- like nickel cobaltite (NiCo2O4) using a simple, chemical, cost-effective hydrothermal method. Nanoflakes- like NiCo2O4 samples are tested as catalysts toward rapid reduction of 4-nitrophenol and as electrode materials for supercapacitors. The conversion of 4-nitrophenol into 4-aminophenol is achieved using a reducing agents like sodium borohydride and NiCo2O4 catalyst. Effect of catalyst loading, 4-nitrophenol and sodium borohydride concentrations on the catalytic performance of 4-nitrophenol is studied. As sodium borohydride concentration increases the catalytic efficiency of 4-nitrophenol increased due to more BH4- ions available which provides more electrons for catalytic reduction of 4-nitrophenol. Catalytic reduction of 4-nitrophenol using sodium borohydride as a reducing agent was based on the Langmuir–Hinshelwood mechanism. This mechanism follows the apparent pseudo first order reaction kinetics. Additionally, NiCo2O4 electrode is used for energy storage application. The nanoflakes-like NiCo2O4 electrode deposited at 120 °C shows a higher specific capacitance than samples synthesized at 100 and 140 °C. The maximum specific capacitance observed for NiCo2O4 electrode is 1505 Fg−1 at a scan rate of 5 mV s−1 with high stability of 95% for 5000 CV cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call