Abstract

AbstractThe inner and outer surfaces of a porous hollow fiber polysulfone support are compared as substrates for the synthesis of polyamide thin‐film composite (TFC) membranes by interfacial polymerization. While both surfaces have pores common of microfiltration membranes, the inner surface has a larger pore diameter than the outer surface (2,700 nm compared to 950 nm). The inner TFC membrane showed higher water nanofiltration permeance than the outer (2.20 ± 0.17 compared to 0.13 ± 0.03 L m−2 hr−1 bar−1). This was due to the influence of the porosity and roughness, which were different on both support surfaces. These membranes are interesting because they were synthesized in a hollow fiber support with a high membrane area per volume unit (~6,900 m2/m3) and the substrate used was commercial, which means that the TFC membrane obtained is suitable for industrial application. A mathematical simulation of the nanofiltration run with COMSOL Multiphysics 5.3 software confirmed the experimental trends observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call