Abstract
This study employed NF270 nanofiltration membranes and SDS-stabilized hexadecane to identify mechanisms of membrane fouling by highly saline oil-water emulsions. Concentration dependencies of NaCl reflection coefficient σ and NaCl permeability coefficient B were measured and used to determine the separate contributions of osmotic pressure and fouling to the overall flux decline. The NaCl permeability coefficient asymptotically converged to the same steady state value across a range of feed salinities and concentration polarization conditions. The measured near-hyperbolic dependence of the reflection coefficient on the transmembrane concentration differential (σΔπm≈ const) negated the effect of concentration polarization on permeate flux. Oil caused an abrupt decrease in permeate flux but only for more saline feeds (seawater level and higher), which was interpreted as a result of membrane surface sealing by coalesced oil. Headloss analysis showed that over the longer term, the additional hydraulic resistance due to a layer of oil droplets on the membrane surface became the dominant fouling mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.