Abstract

Modifications to the surface of polymeric membranes to integrate supplemental properties like surface charge or catalytic activity are the cornerstone of the membrane process advancement to effectuate improvements in functionality and selectivity. Herein, a new approach is demonstrated to construct nanofiltration membranes with a metal-organic coordinated selective layer. Polyethylenimine (PEI) was integrated with phosphite linkages to form a characteristic aminophosphonate ester polymer based on the Kabachnik-Fields reaction, and a thin polymer layer was deposited on an ultrafiltration (UF) membrane to form the aminophosphonate networks surface-modified membranes. The aminophosphonate polymer interlayer facilitated the immobilization of metal cation moieties through the strong coordinative chemical bonding with the amino groups and phosphite moieties. Typically, the incorporated Fe3+ strengthened the membranes' electropositivity leading to excellent heavy metal ion removal (>98%) and efficient organic dye separation (>99.8%). Meanwhile, the strategy also enabled the embedment of a photocatalytic layer comprising nanoneedle-like α-FeOOH that endowed the membrane with high photo-Fenton activity for organic dye mineralization. Subsequently, the α-FeOOH-embedded membrane afforded the photocatalytic self-cleaning potentiality for organic fouling mitigation. This contribution underscores the prospect of advancing the integration of metal-specific functionalities and the membrane process for advanced membrane technologies in water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.