Abstract
A novel polymer membrane with nanosized pore structures has been prepared from the direct copolymerization of acrylonitrile (AN) with a polymerizable nonionic surfactant in water-in-oil (w/o) or bicontinuous microemulsions. This polymerizable surfactant is ω-methoxy poly(ethylene oxide)40 undecyl-α-methacrylate macromonomer [CH3O(CH2CH2O)40(CH2)11OCO(CH3)CCH2, abbreviated: C1-PEO-C11-MA-40]. Besides PEO macromonomer, AN, and crosslinker ethyleneglycol dimethacrylate, the microemulsion system contained varying amount of water that formed w/o microemulsions having water droplet structures and bicontinuous microemulsions consisting of interconnected water channel. The polymerized membranes prepared in this study have pore radii ranging from 0.38 to 2.4 nm as evaluated by PEG filtration. The pore size appears to vary linearly with water content in precursor microemulsions. But a sharp change in the gradient of the linear relationship is observed around 25 wt % water content. Membranes made from bicontinuous (>25 wt % water) microemulsion polymerization have a larger and interconnected (open-cell) nanostructures. In contrast, much smaller closed-cell (disinterconnected) nanostructures were obtained from w/o (<25 wt % water) microemulsion polymerization and the membrane exhibited a permselectivity toward water in pervaporation separation of high ethanol (>50 wt %) aqueous solutions. The separation factor (α) for 95% ethanol aqueous solution by the membrane derived from the microemulsion containing 10 wt % water is about 20. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2785–2794, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.