Abstract

For wound healing applications, a scaffold of biocompatible/porous networks is crucial to support cell proliferation and spreading. Therefore, ϵ-polycaprolactone (PCL) nanofibrous scaffolds containing co-dopants of strontium/selenium in hydroxyapatite (HAP) were modified with different contributions of graphene oxide (GO) via the laser ablation technique. The obtained compositions were investigated using XRD, TEM and FESEM. It was evident that fiber diameters were in the range of 0.15–0.30 µm and 0.35–0.83 µm at the lowest and highest concentration of GO respectively, while the maximum height of the roughness progressed to 393 nm. The toughness behavior was promoted from 5.77 ± 0.21 to 9.16 ± 0.29 MJ m−3 upon GO from the lowest to the highest contribution, while the maximum strain at break reached 148.1% ± 0.49% at the highest concentration of GO. The cell viability indicated that the fibrous scaffold was biocompatible. The investigation of the HFB4 cell attachments towards the fibrous compositions showed that with the increase of GO, cells tended to grow intensively through the scaffolds. Furthermore, the proliferation of cells was observed to be rooted in the porous structure and spreading on the surface of the scaffold. This progression of cells with an increase in GO content may provide a simple strategy not only to enhance the mechanical properties, but also to manipulate a nanofibrous scaffold with proper behaviors for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call