Abstract

A tyrosinase-modified electrode is described to be used as amperometric biosensor for the detection of phenolic compounds in food. The enzyme has been immobilized by drop-coating on a glassy carbon electrode covered by a polyamidic nanofibrous membrane prepared by electrospinning. With respect to others, the selectivity of the designed tyrosinase-biosensor resulted modified by the presence of the nanostructured coating which seems to affect the permeability of phenols as a function of the pH of the solution and of their dissociation constants. The biosensor exhibits a response time of 16 s, a detection limit of 0.05 μM, and a linearity up to 100 μM (slope: −304 nA μM −1; intercept: −191 nA, r 2 = 0.996, n = 19). Among others, it can be successfully used for monitoring in real time the release kinetics of phenols encapsulated in polymeric microcapsules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.