Abstract

Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), sodium alginate (SA), chitosan-nano zinc oxide nanoparticles (CS-Nano-ZnO) and curcumin (Cur) were prepared by ultrasonic processing and electrospinning. When the ultrasonic power was set to 100 W, the prepared CS-Nano-ZnO had a minimum size (404.67 ± 42.35 nm) and a generally uniform particle size distribution (PDI = 0.32 ± 0.10). The composite fiber membrane with Cur: CS-Nano-ZnO mass ratio of 5:5 exhibited the best water vapor permeability, strain and stress. Furthermore, the inhibitory rates against Escherichia coli and Staphylococcus aureus were 91.93 ± 2.07 % and 93.00 ± 0.83 %, respectively. The Kyoho grape fresh-keeping trial revealed that grape berries wrapped with composite fiber membrane still maintained good quality and a higher rate of good fruit (60.25 ± 1.46 %) after 12 days of storage. The shelf life of grape was extended by at least 4 days. Thus, nanofibrous composite membranes based on CS-Nano-ZnO and Cur was expected to be used as an active material for food packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call