Abstract
Li-CO2 batteries with high theoretical energy densities are recognized as next-generation energy storage devices for addressing the range anxiety and environmental issues encountered in the field of electric transportation. However, cathode catalysts with unsatisfactory activity toward CO2 absorption and reduction/evolution reactions hinder the development of Li-CO2 batteries with desired specific capacities and sufficient cycle numbers. In this work, a multifunctional nanofibrous cathode catalyst that integrates N-rich carbon shells embedded with molybdenum carbide nanoparticles and multiwalled carbon nanotube cores was designed and prepared. The N-rich carbon shell could strengthen the absorption capacity of CO2 and Li2CO3. The molybdenum carbide nanoparticles would improve the catalytic activity of both CO2 reduction and evolution reactions. The carbon nanotube cores would provide an efficient network for electron transportation. The synergistic effect of the cathode catalysts enhances the electrochemical performance of Li-CO2 batteries. A high cycling stability of more than 150 cycles at a current density of 250 mA g-1 with a cutoff capacity of 1000 mAh g-1 and a charge/discharge overpotential of less than 1.5 V is achieved. This work provides a feasible strategy for the design of a high-performance cathode catalyst for lithium-air batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.