Abstract

With the advancement of nanotechnology, nanomaterials such as nanofibers have gained attention, as they have applications in technological, environmental and health areas. In this context, electrospinning stands out for being considered a simple and versatile technique that allows the production of nanofibers. Carbon-based additives have been used to compose the polymeric matrix responsible for obtaining nanofibers, such as graphene, which among its applications has been used in gas sensors, as it can detect some molecules, including the ammonia. Thus, it is interesting to carry out studies of the polymer poly(vinyl alcohol) (PVA), together with the additive reduced graphene oxide (rGO), aiming at the application in ammonia gas sensor. Thus, electrospun PVA nanofibers with rGO were produced at different concentrations. To analyze the influence of rGO on PVA nanofibers, they were characterized by optical microscopy (OM) and tested in the presence of ammonia gas, generating graphs of current (i) by time (t). Therefore, electrospun nanofibers with considerable quantity and good formats were obtained, as seen in the OM images. By the graphs of i vs t, it was observed that the nanofibers that contained 4% of rGO showed greater sensitivity in the presence of ammonia gas, proving that rGO can be used as an additive in polymeric nanofibers with application in ammonia gas sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call